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Abstract. Automatically generating Conceptual Graphs (CGs) [1] from natural 
language sentences is a difficult task in using CG as a semantic (knowledge) 
representation language for natural language information source. However, up 
to now only few approaches have been proposed for this task and most of them 
either are highly dependent on one domain or use many manually constructed 
generation rules. In this paper, we propose a machine-learning based approach 
that can be trained for different domains and requires almost no manual rules. 
We adopt a unique grammar system – Link Grammar [2] – for this purpose. 
The link structures of the grammar are more similar to conceptual graphs than 
traditional parse trees. Based on the link structure, through the word- 
conceptualization, concept-folding, link-folding and relationalization processes, 
we can train the system to generate conceptual graphs from domain specific 
sentences. An implementation system is currently under development with IBM 
China Research Lab. 

1 Introduction 

The first step of using Conceptual Graphs(CGs) in knowledge engineering, in most 
cases, is to construct the conceptual graphs to represent the knowledge contained in 
the information source. Unfortunately, automating this step regarding Natural 
Language(NL) source is a daunting task and many retreat to do it manually. Although 
manual construction suffices for some applications, it wouldn’t be adequate for 
processing large amounts of NL data or NL data generated at run time(for example, 
user’s query sentences). Several approaches have already been proposed for this 
problem, but most of them either are highly dependent on one domain or use many 
manually constructed generation rules. In this paper, we propose a machine-learning 
based approach that can be trained for different domains and requires almost no 
manual rules. 

Conceptual graphs, when used to represent knowledge contained in natural 
language sentences, is serving as a semantic representation language. CGs from NL 
sentences, thus, is a process of semantic interpretation. Currently, this process in 
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general is infeasible for the set of all possible sentences. The method we proposed in 
this paper is for domain specific sentences which is the set of sentences that occur 
only in a specific application domain. Though the sentences are limited in one 
domain, our method itself is domain independent and can be trained for various 
domains.  

Domain specific sentences are usually very stylish in the words, phrases, grammar 
and meaning they employ. The strong style leads to reoccurring patterns in the text for 
which Machine Learning techniques are applicable. Before the patterns can be 
learned, we utilize a unique grammar system – Link Grammar [2] – to capture the 
patterns through the internal syntactical and semantic link structures of the sentences. 
We develop word-conceptualization, concept-folding, link-folding and 
relationalization processes to learn to map the link structures to conceptual graphs. In 
short, we explore Link Grammar to map the problem of CG generation to the 
machine-learning area.  

The paper is organized as follows. Section 2 outlines some characteristics of 
domain specific sentences . Section 3 introduces link grammar used in this work. 
Section 4 presents the detailed processes that generate conceptual graphs from domain 
specific sentences and shows how we translate them to the machine-learning area. 
Section 5 concludes our work by comparing related work. 

2 Domain Specific Sentences 

The set of sentences that occur only in one given application domain is called domain 
specific sentences. We assume that domain specific sentences have the following 
characteristics: 

 
1. vocabulary set is small 
2. terms and jargons of the domain appear frequently 
3. grammar is stylish 
4. semantic ambiguity is rare and most can be resolved by surrounding context  
 

These characteristics inevitably exclude some domains such as novel stories which 
may involve a large set of vocabularies and have rich semantic ambiguity. The 
domains we intended are very specialized application domains such as circuit 
descriptions, clothes descriptions, law case documents and patients records. In these 
domains, the above assumptions (or characteristics) are reasonably satisfied. 

These characteristics provide the basis for our work. Small vocabulary set ensures 
that the amount of training is limited for an adequate accuracy. Stylish grammar limits 
the number of possible grammar structures and enables the use of machine learning 
techniques. Rare semantic ambiguity facilitates the semantic interpretation process 
and makes learning from surrounding context to determine the concepts and relations 
possible. Terms and jargons may bring some syntactic trouble. We will see how they 
are handled by link grammar in the next section. 



3 Link Grammar 

Link Grammar is a unique grammar system we employ in our work. Its link structure 
captures the internal structure of a sentence. We propose to use machine-learning 
techniques to automatically map this syntactic structure to the corresponding semantic 
structure – conceptual graph. We will describe the processes of mapping in section 4. 
In this section we will give a simple introduction to link grammar and explain why we 
choose it. We will use a simple sentence – I go to Shanghai – as an example. The 
diagram in Fig.1 is a link grammar parsing result for the sentence. 
 

 
 
 
The labelled arcs between words are called links. Each word has a linking 

requirement stating what kind of links it can attach. The link requirements are stored 
in a dictionary. A set of links of a sentence is called a linkage if it satisfies the 
following conditions [2]: (1) Planarity: The links do not cross ( when drawn above the 
words ). (2) Connectivity: The links suffice to connect all the words together. (3) 
Satisfaction: The links satisfy the linking requirements of each word in the sentence. 
Links in Fig.1. is such a linkage. The parser of link grammar called link parser will 
find all possible linkages for a given sentence. Currently, the link parser from CMU 
[3] has a dictionary of about 60000 word forms and covers a wide variety of syntactic 
constructions. Applying link grammar to languages other than English (eg. Chinese 
[4] ) is also possible.  

Different from most other natural language grammars, link grammar’s parsing 
result is a more flat link structure instead of a tree structure. Words that are associated 
semantically and syntactically are directly linked by the link structure [2]. In a tree 
structure, they may only be linked indirectly via their common parent nodes. This 
makes link structure more like a conceptual graph than a parse tree does. It can be 
seen clearly from the example in Fig.2. For the same sentence “I go to Shanghai”, we 
put the link structure, parse tree and conceptual graph of it together in Fig.2 and we 
can make a visual comparison. 

This constitutes the most important reason that we adopt link grammar in our work. 
It is this similarity that makes learning the mapping from link structure to conceptual 
graph possible. One may ask is one example enough to show that link structure is 
more like conceptual graph. In fact, they are similar on a deeply founded base. 

Conceptual graph consists of concepts and relations. The relations denote the 
semantic associations between concepts. Link structure consists of words and links. 
The links connect syntactically and semantically related words. This isomorphism 
provides the basis for structure similarity. Further more, in natural language, open 
words (such as noun, adjective and verb) access concepts from the catalog of 
conceptual types, while closed words (such as  prepositions) help clarify the 

 

I                        go                       to                 Shanghai 

Sp*I                  MVp                    Js 

Fig. 1. The parsing result for “I go to Shanghai” 



 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

relationships between the concepts [5]. In the link structure, the links are also hints of 
the relationships between concepts.  In the above example, the open word “go” 
represents the “GO” concept. The closed word “to” (together with its links “MVp” 
and “Js”) between “go” and “Shanghai” represents the semantic relation “LOC”. This 
correspondence between the link structure and the underlying semantics not only 
makes link structure and conceptual graph similar in structure but also makes the 
mapping from link structure (syntactic) to conceptual graph (semantic) possible. 

Another reason that suggested us to adopt link grammar is its extensibility. The 
linking requirements of each word describing how it can be used in a sentence are 
stored in the dictionary. The grammar is distributed among words [2]. It is a lexical 
grammar. Thus, expressing the grammar of new words or words that have irregular  
usage is easy – there’s a separate definition for each word. This extensibility is 
especially useful for the terms and jargons in the domain specific sentences that we 
have mentioned in section 2. What we need to do is to add or modify linking 
requirements in the dictionary for the terms and jargons that have irregular usage in 
the domain. Idioms are also handled this way. 
 

I                        go                       to                 Shanghai 

Sp*I                  MVp                    Js 

The link structure: 

The grammar tree: 

PRO 

S

NP VP 

V PP 

PREP N I go 

to Shanghai 

The conceptual graph: 

I GO SHANGHAI  AGNT  LOC 

Fig. 2. Link structure is more like a conceptual graph 



4 Learning to generate CGs 

Driven by the characteristics of domain specific sentences and the similarity between 
link structure and conceptual graph, we propose to automatically generate CGs by 
learning to map link structure to conceptual graph. 

The most studied task in machine learning is inferring a function that classifies an 
example represented as a feature vector into one of a finite set of categories [6]. 
Machine learning, thus, can be seen as learning to classification. We must convert the 
problem of mapping to the problem of classification. We divide the mapping process 
into five steps and in each step a special kind of map operation is performed. The 
operation maps part of the syntactic structure into its corresponding semantic 
representation according its context. We translate the map operations into 
classifications of machine-learning area by encoding the operations as finite 
categories and encoding the contexts in which operations are performed as feature 
vectors. Thus, performing operations according to context is encoded and translated to 
classification according to feature vector. 

At the same time, we propose to separate operation from its encoding in the 
training phase. Once the training operations have been recorded, feature vectors and 
categories can be encoded from them separately. This separation allows us to decide 
separately what constitutes  context information and is encoded into the feature vector 
without interfering the training. 

The first step of the mapping is called “word-conceptualization”. This step maps 
words to their corresponding concepts and create concept nodes in the conceptual 
graph. The second step picks out concept modifiers and fold them into the existing 
concepts and is called “concept-folding”. In the third step – “link-folding”, closed 
words (such as prepositions) with their links that represent relations between concepts 
are identified and the corresponding relations are created in the conceptual graph. For 
those links that also represent semantic relationships, the relations are created in the 
conceptual graph in the “relationalization” step – the fourth step. To prevent them 
from interfering each other, this four steps are trained separately. In the last step, 
simple coreference detection and nested graph creation operations are performed. 
Currently, this is the only step that uses manually constructed heuristics and needs no 
training and learning. 

In the following sub-sections through 4.1 to 4.5, we will explain the above five 
steps in detail and use the sentence “The polo with an edge is refined enough for 
work” as an example. The link structure of the sentence is shown in Fig.3. This 
sentence is excerpted from the corpora in our ongoing project with IBM China 
Research Lab. The corpora is a collection of clothes descriptions from many clothes 
shops on the Web.  

The        polo       with       an       edge       is       refined       enough       for       work 

Dmu Mp Ds Pv MVa Jp  

Js 

 

MVp 
 

Ss 

Fig. 3. The link structure for the example sentence 



4.1 Word Conceptualization 

In natural language, open words access concept types from domain ontology and 
schemata. We start the mapping from creating concept nodes  for the open words in 
the sentence. In order to convert this concept creation operation into a classification 
operation, the concept type ID from domain ontology or schemata is encoded as the 
category name and the context information (such as part-of-speech tag, links, etc.) of 
the word is encoded as the feature vector. Although we have proposed to separate 
operation from its encoding, for convenience we will present our encoding together 
with the operation as an example. Its function stops there as only an example. We are 
not trying to make the encoding perfect in this paper. 

The category for the word-conceptualization operation is encoded as the concept 
type ID in domain ontology or schemata. We use WordNet [7] as an experiment 
ontology in our project and the concept type ID is something like “WN16-2-330153” 
which can be used later as a key to retrieve a concept (word sense in the WordNet 
terminology) from the WordNet database. 

For an open word W in a link structure, as shown in Fig.4, we encode the following 
context information of the operation into the feature vector:(1) word W in its original 
form (2) part -of-speech (POS) tag of W (3) label of the W’s innermost left link (4) 
label of the W’s outermost left link (5) label of the W’s innermost right link (6) label 
of the W’s outermost right link (7) L1’s concept type ID (8) L2’s concept type ID. If 
the links or words for the above context information do not exist for W, we encode nil 
in their places and we treat non-exist links as outermost links. 

For example, in the sample sentence, the context for word “refine” can be encoded 
as vector: < refine, VBN, Pv, nil, MVa, MVp, nil, nil >. See Fig.5. for reference. The 
TreeBank [8] POS tag “VBN ”comes from a separate POS tagger used in our project. 

 
 
 
 

After this step, all concept nodes of the conceptual graph should be created. For the 
example sentence, the conceptual graph after this step is shown in Fig.6. For 
convenience, we use simple concept names in Fig.6. The concept type S-WORK is 
the “SUITABLE-FOR-WORK” concept type defined in our schemata which contains 
a variable. We will explain it in the last step: integration. 

 
 

L2   …    L1   …    W   …    R1   …    R2 

Fig. 4. Word W in link structure 

…   is      refined       enough        for  …  

Pv MVa  

MVp 

Fig. 5. The context of word “refine” in the example sentence 

POLO EDGE REFINE ENOUGH S-WORK: *x 

Fig. 6. Conceptul graph of the example sentence after word-conceptualization 



4.2 Concept Folding 

In standard conceptual graph, generic concepts are bounded by an implicit existential 
quantifier[1, p.86]. It is realized in the indefinite article “a” in English. In the classic 
example “a cat sits on a mat” in Sowa’s book, “a cat” is translated into the generic 
concept [CAT]. This is basically what we call “Concept Folding”. The indefinite 
article – a – is “folded” into the concept [CAT].  

In order to simplify the mapping process, we extend the Conceptual Graph with 
many other concept modifiers in addition to the existential quantifier. These modifiers 
can be later removed in a equivalent standard conceptual graph. The concept 
modifiers include generalized quantifiers, modal modifiers and tense modifiers. 
Several modifiers can be combined together to modify a concept.  

Generalized quantifiers are used to modify concepts that come from nouns. They 
include ‘a’ quantifier (the original existential quantifier), ‘the’ quantifier, ‘few/little’ 
quantifier, ‘some’ quantifier, ‘any’ quantifier, etc. Modal quantifiers are used to 
modify concepts that come from verbs. They include ‘must’ modifier, ‘may’ modifier, 
‘can’ modifier, ‘need’ modifier, ‘dare’ modifier, etc. Tense modifiers also are used to 
modify concepts that come from verbs. They include ‘past’ modifier, ‘future’ 
modifier, ‘progressive’ modifier, ‘perfect’ modifier, etc. The modifying word must be 
a closed word. For those links that doesn’t connect both a closed word and an open 
word, this operation is not performed in training and generating phases. 

The general form of a concept and its modifier in a link structure is shown in Fig.8. 
A modifying word Wm is directly linked to the concept word Wc it modifies. The name 
of the modifier’s type is used to encode the category for the “folding” operation. 
Because this is a simple operation, we only encode the following context information 
of the operation into the feature vector: (1) word Wm in its original form (2) label of 
the direct link between Wm and Wc. 

 
 

 
As an example, in the sample sentence, two concept-folding operations are needed. 

One for “the polo” and one for “an edge”. The feature vectors for them are 
respectively < the, Dmu > and < a, Ds >. See Fig.7 for reference. Fig.9 is the 
conceptual graph of the sample sentence after this step. 
 
 
 
 

 
 

Wm                        Wc 

Fig. 7. Concept modifer in the example sentence 

The      polo     …    …   an      edge 

Dmu Ds 

Fig. 8. Concept modifier in link structure 

POLO: # EDGE REFINE ENOUGH S-WORK:*x 

Fig. 9.  Conceptul graph of the example sentence after concept-folding 



4.3 Link Folding 

After the concepts have been created in the previous two steps, we are going to 
determine the semantic relations between the concepts. Closed words (especially 
prepositions) with their links indicate relationships between the concepts of the words 
they connect. For example, in the sample sentence, “…  polo --- with ---  edge … ” 
shows a PART relation between [POLO:#] and [EDGE] concepts of the respective 
words ‘polo’ and ‘edge’. We can “fold” the 'with' and its left and right links and 
replace them with a PART relation. This is called the link-folding operation.  

Fig.10 depicts the general form of the link strucutre on which the link-folding 
operation can be performed. W is the closed word and it has two links connecting two 
other words T1 and T2 in the sentence. We encode the category for this operation as 
the type ID of the relation it creates. The relation type ID is from the same domain 
ontology or schemata as the concept type ID used in word -conceptualization. The 
feature vector is encoded from the following context information of this  operation: (1) 
word W in its original form (2) POS tag of W (3) concept type ID of T1 (4) POS tag of 
T1 (5) concept type ID of T2 (6) POS tag of T2 (7) label of the link between T1 and W  
(8) label of the link between T2 and W. (As to the direction of the created relation and 

the order of the features in the vector, we can easily handle them with trivial 
techniques that we will not treat here) 

For instance, in our sample sentence, there are three closed words that needs to be 
"link-folded": ‘with’, ‘is’ and ‘for’. They are shown in bold italic font in Fig.11. 
Among them, the word ‘is’ is an auxiliary verb and ‘with’ and ‘for’ are prepositions. 
In order to distinguish more clearly the links they attach, the links in the middle that 
‘is’ attaches is drawn in dash lines. Other links in the link structure are not drawn 
here. 
 
 
 
 
 
 

We still take “…  polo --- with --- edge … ” as an example. The category is encoded 
as the relation the operation creates: PART. The feature vector of this operation is 
encoded as < with, IN, POLO, NN, EDGE, NN, Mp, Js >. The relation indicated by 
the auxiliary verb ‘is’ is THEME and the ‘for’ between ‘refined’ and ‘work’ 
represents a RESULT relation. 

The conceptual graph after this step has relations added between concepts. As to 
our example sentence, the conceptual graph has grown to Fig.12. 
 

T1     …      W      …      T2 

Fig. 10. Closed word W in link structure for link-folding 

The    polo       with       an       edge       is       refined       enough       for       work 

Mp Pv Jp  

Js 

 

MVp 
 

Ss 

Fig. 11. The three closed words with their links in the example sentence 



 
 
 
 
 
 
 
 

 

4.4 Relationalization 

Semantic relation between concepts can also be expressed directly by a link in the 
link structure between the words that represent the concepts. This is the case for the 
‘MVa’ link between ‘refined’ and ‘enough’ in the link structure of our example 
sentence. We can directly translate the link into a semantic relation and we call this 
operation "relationalization". 

Fig.13 gives the general form of the link structure on which a relationalization 
operation can be performed. W1 and W2 are two words directly connected by a link 
that indicates a semantic relation between the concepts of W1 and W2. The category of 
the operation is encoded as the relation type ID from domain ontology or schemata. 
The following context information is encoded into the feature vector of this operation: 
(1) concept type ID of W1 (2) concept type ID of W2 (3) label of the link. (As to the 
direction of the created relation and the order of the features in the vector, we can 
easily handle them with trivial techniques that we will not treat here) 
 
 

In the case of our example sentence, one relationalization operation is needed for 
the ‘MVa’ link between ‘refined’ and ‘enough’. It is shown in Fig.14. The category of 
the operation is encoded as the relation MANNER . The feature vector of the 
operation is encoded as < REFINE, ENOUGH, MVa > . 
 
 

After this step, more relations may be created in the conceptual graph. Regarding 
our example, the MANNER relation just created will connect the [ENOUGH] concept 
to the graph. It is shown in Fig.15. 
 

POLO: # EDGE 

REFINE 

ENOUGH 

S-WORK:*x  THME 

 PART 

 RSLT 

Fig. 12. Conceptual graph of the example sentence after link-folding 

W1                        W2 

Fig. 13. The link in link structure for relationalization 

…   refined             enough  …  

Fig. 14. The MVa link in the example sentence 

MVa 



 
 
 
 
 
 
 
 
 
 
 

4.5 Integration 

Integration is the last step in generating a conceptual graph. This step is not part of the 
training process. It only appears in the generating phase and it is the only step that 
uses manually constructed heuristics. What it does includes simple coreference 
detection and nested graph creation. 

In the discussion of the previous four steps, we doesn’t involve lambda expressions 
for simplicity. In fact, they may appear when words for concepts are missed in the 
sentence. They may also be introduced when concept types from domain schemata are 
expanded by type expansion. In order to complete the conceptual graph, we need 
draw coreference lines between the variables in these lambda expressions. 

Although there is machine-learning based approach for coreference detection [9], in 
our work we mainly focus on the generation of conceptual graph for a single sentence. 
Discourse analysis and coreference detection is left for a separate research work. For 
different domains, we may construct different heuristics for them. In our current wok 
we only make all undetermined references to point to the topic currently under 
discussion.  

Nested graph (context) may be introduced by type expansion or the removal of 
modal or tense modifiers of a concept. In our example, as we have mentioned in 
section 4.1, the concept type S-WORK is actually a “SUITALBE-FOR-WORK” type 
from the domain schemata. We can do a type expansion on it. Fig.16 is the type 
definition of the “SUITALBE-FOR-WORK”. SUTB represents  the relation 
SUITABLE. 
 
 
 
 
 
 
 

POLO: # EDGE 

REFINE ENOUGH 

S-WORK:*x 

 THME 

 PART 

 MANR 

 RSLT 

Fig. 15. Conceptual graph of the example sentence after relationalization 

CLOTHES: *x WORK-SITUATION  SUTB 

type  SUITABLE-FOR-WORK(x)  is  

Fig. 16. The type definition for SUITABLE-FOR-WORK



After the type expansion, we can do a simple coreference detection that draws a 
coreference line between the undetermined variable x  and the current topic [POLO:#]. 
After this step, the final conceptual graph is generated. Fig.17 is the result for our 
example sentence “The polo with an edge is refined enough for work”. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

4.6 Summary 

Through the sections from 4.1 to 4.5, we discussed the five steps in the mapping from 
link structure to conceptual graph and showed how we translate the mapping into 
machine-learning area. Word-conceptualization and concept-folding build concepts in 
the conceptual graph. Link-folding and relationalization connect concepts with 
semantic relations. For each of the four steps, we map it into the problem of 
classification in the machine-learning area. In the last step, we use manually 
constructed heuristics to do simple coreference detection and nested graph creation. 

In the training phase, it is relatively easy for the trainer to determine on which 
words and links to perform the operations in each of the four steps, but how it is 
decided in the generating phase? This may be the question that one may ask in 
considering the whole process of conceptual graph generation. The simplest solution 
is to generate all possible operations and perform them. This seemingly simple 
solution actually works for simple domains because the number of possiblities is very 
low by limiting the combinations with selectional constraints and other restrictions 
(eg. both closed word and open word must appear in the concept-folding operation). 
A more elaborated solution is again to learn the knowledge. Because the number of 
words and links involved in each of the four operations are at most five, mapping this 
problem to a classification problem is trivial.  

POLO: # EDGE 

REFINE ENOUGH  THME 

 PART 

 MANR 

 RSLT 

CLOTHES: *x WORK-SITUATION  SUTB 

Fig. 17. The final conceptual graph of the example sentence 



Currently a system that reads clothes descriptions from clothes shops on the Web 
and comprehends them in conceptual graphs is under development with IBM China 
Research Lab. The system is based on the ideas presented in this paper. 

5 Related work 

Recently there has been a significant increase in research on learning for natural 
language by using corpora data [6] and there are growing number of successful 
applications of symbolic machine learning techniques[10,11]. Applying the technique 
to conceptual graph generation has not yet been seen. Previous work on conceptual 
graph generation either use manually constructed rules or are highly dependent on one 
domain. 

We roughly divide previous work into slot-filling and structure-mapping categoris 
according to their generating techniques. Slot-filling techniques such as [12,13] fill 
template graphs with thematic roles identified in the parse tree. Often the conceptual 
graph of one tree node is constructed using the conceptual graphs of its child nodes 
according to construction rules on how to filling the slots. This process can be done 
recursively bottom-up on the parse tree as in [14]. Although this approach has been 
successfully applied in many applications, it heavily depends on manually created 
construction rules on the parse tree. These rules are not only hard to create but also 
difficult to port to different domains. These rules mix the syntactic knowledge of the 
grammar used and the semantic knowledge of the domain. They create a tight 
coupling between the two kinds of knowledge and thus make the independent change 
of them difficult. In contrast, in our approach, the problem of how to perform 
mapping operations is translated into machine-learning problems. We need not create 
rules. We train the machine to learn the rules. The coupling of the syntactic 
knowledge of link grammar and the semantic knowledge of domain is binded by 
training. This coupling is loose and can be changed by training in different domains. 

Another kind of technique advanced in previous work is to directly map between 
syntatic structure and semantic structure of CG such as [15] and [16]. We call them 
structure-mapping. In this respect, they are more similar to our work. To map to more 
flat strucutres of conceptual graphs, [15] uses syntactic predicates to represent the 
grammatical relations in the parse tree. Instead, in our work, link grammar is 
employed to directly obtain a more flat structure. Syntactic predicates are then 
translated to all possible semantic interpretations according to a database of 
translating rules. All the possibilities are finally checked against a LKB. Different 
from [15]’s approach, our work doesn’t uses manual rules. Moreover, we separate the 
semantic mapping into several steps which greatly reduce the total number of 
possibilities. In another work in [16], parse tree is first mapped to a “syntactic CG”. 
The “syntactic CG” is then mapped to a real CG. This approach again heavily uses 
manually constructed mapping rules (such as Parse-To-CG rules and SRTG rules in 
[16]). Further more, unlike [16]’s two-tier mapping, we do the mapping from 
syntactic structure in several steps but one-tier. 

In [5], a multi-specialists framework for conceptual graph generation is proposed. 
Our approach can function as a syntax specialist in the framework. Our work presents 



a preliminary inquest into the use of machine-learning technique to generate 
conceptual graphs from domain specific sentences. We expect that many 
improvements are possible and our work may be selectively adopted or enhanced. 
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